BAB IV

HASIL PENELITIAN DAN PEMBAHASAN

4.1 Hasil Analisa Struktur Bangunan Program SAP2000

Ada pun pemilihan sambungan pada gedung Grand Dharmahusada

Lagoon dengan menggunakan SAP2000 sebagai berikut :

Gambar 4. 1 Pemodelan Struktur Bangunan SAP2000 Sumber : Hasil Penelitian

Hasil Axial Force dari SAP2000 dengan berupa gambar di bawah

ini :

Gambar 4. 2 Pemodelan Struktur Axial Force SAP2000 Sumber : Hasil Penelitian

ini :

Gambar 4. 3 Pemodelan Struktur Moment 2-2 SAP2000 Sumber : Hasil Penelitian

Hasil dari pemodelan dengan SAP2000 maka di dapat titik sambungan dengan dengan nilai terbesar untuk selanjutnya pemodelan di ABAQUS.

Tabel Hasil analisa SAP2000 :

le	View Edit	Format-Filter	-Sort Select	Options							
its: /	As Noted						Assembled Joint N	lasses			
er:											
	Joint Text	MassSource	U1 KN-s2/m	U2 KN-s2/m	U3 KN-s2/m	R1 KN-m-s2	R2 KN-m-s2	R3 KN-m-s2	CenterX m	CenterY m	CenterZ m
	32024	Mass Source	2.09	2.09	2.09	C	0	0	16.963	19.9	150.
	32025	Mass Source	0	0	0	C	0	0	6.451	0	151.81
	32026	Mass Source	7.05	7.05	7.05	C	0	0	6.55	0	150.
	32027	Mass Source	5.76	5.76	5.76	C	0	0	12.85	0	150
	32028	Mass Source	11.44	11.44	11.44	C	0	0	16.65	0	150.
	32029	Mass Source	12.24	12.24	12.24	C	0	0	22.95	0	150.
	02000	mass 500100	4.00	4.00	4.00		•	v		01.010	100.
	32031	Mass Source	16.05	16.05	16.05	c	0	0	0	16.425	150.
	00000	******	15.0	15.0	15.0	_			20.0	10.105	
	32033	Mass Source	13.13	13.13	13.13	C	0	0	0	0	150
	32034	Mass Source	13.2	13.2	13.2	C	0	0	29.5	0	150.
	32035	Mass Source	11.12	11.12	11.12	C	0	0	0	31.075	150
	32036	Mass Source	11.39	11.39	11.39	C	0	0	29.5	31.075	150.
	32037	Mass Source	4.98	4.98	4.98	C	0	0	6.451	0	150.
	32038	Mass Source	6.95	6.95	6.95	C	0	0	0	22.275	150
	22020	Hana Course	7.04	7.04	7.04			0	0	0.05	450

Gambar 4. 4 Tabel Pada SAP2000

Sumber : Hasil Penelitian

Hasil pemilihan titik sambungan dengan gaya tertinggi untuk di analisa pada tinjauan hubungan balok kolom di dapat 3 titik yaitu sebagai berikut :

		5	Assembled Joint	Masses								-	
			File View Edit Ints: As Noted	Format-Filter	-Sort Select	Options		A	ssembled Joint I	asses			
		Í	iter: Joint Text	MassSource	U1 KN-s2im	U2 KN-s2im	U3 KN-s2im	R1 KN-m-s2	R2 KN-m-s2	R3 KN-m-s2	CenterX	CenterY	CenterZ
	4 % > 5		32024	Mass Source	2.09	2.09	2.09	0	0	0	16.963	19.9	150
			32025	Mass Source	0	0	0	0	0	0	6.451	0	151.8
			32026	Mass Source	7.05	7.05	7.05	0	0	0	6.55	0	15
			32027	Mass Source	5.76	5.76	5.76	0	0	0	12.85	0	15
			32028	Mass Source	11.44	11.44	11.44	0	0	0	16.65	0	15
2.5			32029	Mass Source	12.24	12.24	12.24	0	0	0	22.95	0	15
8.3	22.25		32030	Mass Source	4.89	4.89	4.89	0	0	0	17.701	31.075	15
			32031	Mass Source	16.05	16.05	16.05	0	0	0	0	16.425	15
			32032	Mass Source	15.8	15.8	15.8	0	0	0	29.5	16.425	150
			32033	Mass Source	13.13	13.13	13.13	0	0	0	0	0	150
	888888		32034	Mass Source	13.2	13.2	13.2	0	0	0	29.5	0	150
			32035	Mass Source	11.12	11.12	11.12	0	0	0	0	31.075	150
31			32036	Mass Source	11.39	11.39	11.39	0	0	0	29.5	31.075	150
3			32037	Mass Source	4.98	4.95	4.98	0	0	0	6.451	0	150
31			32038	Mass Source	6.95	6.95	6.95	0	0	0	0	22.275	150
			32039	Mass Source	7.01	7.01	7.01	0	0	0	0	8.35	150
		R	Record: << <	11033	> >> of 11	6163					Add Tables	k	Done

Gambar 4. 5 Pemilihan Sambungan

Sumber : Hasil Penelitian

Ada pun pemilihan sambungan pada gedung Grand Dharmahusada

Lagoon dengan menggunakan SAP2000 sebagai berikut :

4.2 Data Pemodelan

Analisa elemen hingga dengan menggunakan ABAQUS, terlebih perlu mengetahui detail titik sambungan dan perhitungan control perencanaan dimensi Kolom dan balok pada gedung Grand Dharmahusada Lagoon sebelum pemodelan pada ABAQUS.

1. Data Perhitungan control perencanaan dimensi Kolom dan balok

Perencanaan Dimensi Kolom

• Beban akibat berat sendiri kolom :

Dimensi kolom direncanakan 220 x 90 cm

Wkolom = b x h x T x BJ

= 0,9 x 0,22 x 3,2 x 2,4

= 1,5 T

• Kombinasi pembebanan :

DL = (Wlantai x T.Lantai) + Watap + (Wkolom x T.Kolom) = (15,055 x 3,2) + 10,087 + (1,5 x 3,2) = 63,06 T

LL = (Wlantai x n)
=
$$(3852 \times 3,2)$$

= $12,32 \text{ T}$
QU = $1,4\text{D} = (1,4 \times 63,06)$ = $88,28 \text{ T}$
QU = $1,2\text{D} + 1,6\text{L} + 0,5(\text{Lr atau R})$
= $1,2(63,06) + 1,6(12,32) + 0,5(1,607)$
= $96,18 \text{ T}$

Dipakai nilai yang terbesar,

Qu= 96,18 T = 96180 kg.

Dimensi, h = b

$$A = \frac{P}{0.3 \ x \ f'c} = \frac{96180}{0.3 \ x \ 41.5 \ x \ 10} = 772.53 \ cm^2$$

A = b2

 $b = \sqrt{A} = \sqrt{772,53} = 27,79 \text{ cm}$

Jadi, digunakan dimensi kolom 90 x 220 cm

Dengan menggunakan cara yang sama didapat nilai resume dimensi kolom dari masing – masing lantai.

		L	Dimensi		
Lantai	Tipe		b	h	
		m	cm	cm	
	K1	3,2	90	220	
	K4	3,2	120	120	
Basement 3 & 2	K2	3,2	85	195	
	K3	3,2	85	195	
	KR	3,2	40	80	
	K1	4,5	90	220	
	K4	4,5	120	120	
Basement 1	K2	4,5	85	195	
	K3	4,5	85	195	
	KR	4,5	40	80	
	K1	5	90	220	
	K4	5	120	120	
Lantai 1	K2	5	85	195	
	K3	5	85	195	
	KR	5	40	80	
	K1	3	90	220	
	K4	3	120	120	
Lantai 2	K2	3	85	195	
	K3	3	85	195	
	KR	3	40	80	
Lantai Mezzanine	K1	3,6	90	220	
	K4	3,6	120	120	

Tabel 4. 1 Resume Pendimensian Kolom

	K2	3,6	85	195
	K3	3,6	85	195
	KR	3,6	40	80
	K1	3,9	90	220
Lantai 3	K4	3,9	120	120
	K2	3,9	85	195
	K3	3,9	85	195
	K1	3,2	80	200
Lantai 4 - 11	K4	3,2	110	110
	K2	3,2	75	170
	K3	3,2	75	180
	K1	3,2	70	180
Lantai 12 - 19	K4	3,2	100	100
	K2	3,2	70	150
	K3	3,2	70	155
	K1	3,2	65	160
Lantai 20 - 27	K4	3,2	90	90
	K2	3,2	60	140
	K3	3,2	65	140
	K1	3,2	55	150
Lantai 28 - 35	K4	3,2	80	80
	K2	3,2	55	115
	K3	3,2	55	125
	K1	3,2	55	110
Lantai 36 - 40	K4	3,2	70	70
	K2	3,2	55	80

	К3	3,2	45	105
	K1	3,188	55	110
Lantai 41 - Atap	K4	3,188	70	70
	K2	3,188	55	80
	K3	3,188	45	105

(Sumber : Data proyek, 2017)

Dimensi Balok Induk

Syarat lebar balok induk tidak boleh lebih kecil dari :

- 1. $0,3h = 0,3 \times 50 = 15 \text{ cm} < 30 \text{ cm}$
- 2. 25 cm < 30 cm
- Balok induk memanjang tipe (B1) dengan bentang (L) = 960 m, seperti gambar 4.1.

Gambar 4.1 : Balok Induk (B1)

(Sumber : Data proyek, 2017)

hmin : 1/16 L = 960/16 = 60,00 cm

h : hmin x (0,4 + fy/700)

: 60,00 x (0,4 + 390/700)

: 57,42 cm ≈ 70 cm

Diasumsikan b = 2/3h, maka ;

b : 2/3h = 2/3 x 57,42 = 38,28 cm ≈ 40 cm

Dimensi Balok Anak

 Balok anak memanjang tipe (BA) dengan bentang (L) = 515 m, seperti gambar 4.2.

Gambar 4. 6 Balok Induk (BA) (Sumber : Data proyek, 2017)

- hmin : 1/21 L = 515/21 = 24,52 cmh : hmin x (0,4 + fy/700) : 24,52 x (0,4 + 390/700) : 23,46 cm \approx 60 cm Diasumsikan b = 2/3h, maka ;
- b : 2/3h = 2/3 x 23,46 = 15,64 cm ≈ 30 cm

Beikut merupakan resume pendimensian balok pada gedung apartemen

Grand Dharmahusada Lagoon Surabaya. Dilihat pada tabel berikut :

Tabel 4. 2 Resume Pendimensian Balok

Tipe Balok	Dimensi (mm)				
	b	h			
Balok Induk					
B1	400	700			
B2	350	700			

B3	400	800
B5	450	900
B1A	400	800
B1B	450	700
B1C	400	700
B1E	300	500
B1F	550	600
ВК	400	700
BR1	350	550
BR2	350	550
LB1	500	700
LB2	500	700
Balok Anak		
BA	300	600
BA1	300	700
BA2	300	500

(Sumber : Data proyek, 2017)

1. Data Pemodelan 2 Dimensi Benda Uji pada Program AutoCAD

Gambar 4. 8 Detail Standart penulangan AUTOCAD (Sumber : Data proyek, 2017)

Gambar 4. 9 Detail Standart penulangan AUTOCAD (Sumber : Data proyek, 2017)

4.3 Hasil dan Pembahasan Output ABAQUS CAE v6.14

Tahapan Analisa Metode Elemen hingga titik sambungan balok dan kolom Dengan Abaqu**s**

Dengan menganalisa kinerja sambungan balok kolom dengan Metode elemen hingga menggunakan Perangkat lunak ABAQUS.

Berikut ini adalah Tahapan ABAQUS yang harus dilakukan:

1. Pemodelan (Part)

Part / permodelan pada penelitian ini terdiri dari :

Gambar 4. 10 Tahap Pemodelan

Sumber: data penelitian

Gambar 4. 11 Tahap Pemodelan

Sumber: data penelitian

2. Tahap definisi material (Property)

Gambar 4. 12 Tahap definisi material / property

Sumber : data penelitian

Data Material Input Pada Abaqus :

Seluruh dimensi dalam satuan millimeter

-	Seluruh Piel / level dalam satuan me	eter
-	Mutu Beton	
0	Kolom dan Shearwall LT.B3 – LT 19	: K – 500
0	Kolom dan Shearwall LT.20 – LT 27	: K – 450
0	Kolom dan Shearwall LT.28 – LT 35	: K – 400
0	Kolom dan Shearwall LT.36 – LT Ata	ap : K – 300
0	Pelat B1, B2, B3	: K – 350
0	Pelat, Balok LT.B3 – LT 35	: K – 350
0	Pelat, Balok LT 36 – LT Atap	: K – 300
-	Mutu Baja Tulangan	
0	Struktur Bawah :	
	U24 Ø < 13 mm (Polos), fy	: 240 Mpa
	U40 D > 13 mm (Ulir), fy	: 400 Mpa
0	Struktur Atas	
	U24 Ø < 13 mm (Polos), fy	: 240 Mpa
	□ U40 D > 13 mm (Ulir), fy	: 400 Mpa

3. Input Concrete Damage Plasticity

Data Input *Concrete Damage Plasticity* pada ABAQUS ada 3 yang harus masukkan, yaitu :

a. Plasticity

Plasticity beton sesuai yang diusulkan oleh (Kmiecik & Kaminski, 2011)

Gambar 4. 13 Deskripsi material beton plasticity

Sumber : Data Penelitian

b. Compress Behavior

Tabel 4. 3 Tabel Inelastic Strain, Compression Stress, CompressionDamage beton f'cm 33 Mpa

- 4. Input Data Beban
 - Pemberian Beban,

Gambar 4. 14 Penentuan Pembebanan Pada Balok dan kolom

Sumber : Data penelitian

5. Interaction

embedded region yaitu rebar tertanam di dalam beton.

Gambar 4. 15 Interaksi rebar tertanam di dalam beton

Sumber : Data penelitian

pada tahap selanjutnya adalah komposit, hubungan antara balok dengan kolom dengan mengunakan Tie, yaitu mendefinisikan bahwa antar kedua permukaan balok dan kolom tidak terdapat pergeseran yang relatif diantara keduanya.

Gambar 4. 16 Tie constraint antara permukaan balok dengan kolom Sumber : Data penelitian

6. Step

Merupakan tahapan untuk membuat perintah kepada Abaqus berupa :

- 1. Tahapan analisa, dimana akan dijelaskan tahapan pembebanan
- Output pada penelitian ini step yang digunakan adalah type static, general

Gambar 4. 17 Pengaturan steps

Sumber : Data penelitian

7. Meshing

Meshing adalah membagi elemen part (grid elemen) yang telah dibuat menjadi beberapa bagian dengan ukuran yang disesuaikan.

Gambar 4. 18 Meshing element assembly

Sumber : Data penelitian

8. Job

Job adalah mengolah inputan data yang sudah di input pada abaqus untuk dilakukan analisa terhadap elemen struktur.

Gambar 4. 19 Job

Sumber : Data penelitian

4.4 Hasil FEM Abaqus

1. Hasil Dari FEM abaqus pada sambungan berikut ini :

Gambar 4. 20 Retakan Pada Beton

Sumber : Data Penelitian

Gambar 4. 21 Tegangan Pada Pembesian

Sumber : Data Penelitian